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1. Introduction
In these notes, we explain Nazarov and Sodin’s proof of the law of large numbers for the number of
nodal surfaces for very general continuously differentiable Gaussian fields. Given a random subset of
ℝ𝑑, a natural question to ask is “How fast does the number of its connected components contained in
a ball grow as a function of the radius?”. Here, we will consider zero sets 𝑍(𝑓) = 𝑓−1({0}) of certain
random functions 𝑓 : ℝ𝑑 → ℝ with Gaussian finite-dimensional marginals.

Before discussing this, let us elaborate on the analogous question (and its answer) in the case of
percolation, “How fast does the number of percolation clusters in a box grow as a function of the width
of the box?”. Let 𝜋 be a Bernoulli percolation with parameter 𝑝 ∈ [0, 1] on ℤ𝑑 and let 𝐾𝑛 be the number
of percolation clusters that are completely contained in the box [−𝑛, 𝑛]𝑑, then

𝐾𝑛/(2𝑛 + 1)𝑑 → 𝔼(1/#𝐶0) a.s. and in 𝐿1  as 𝑛 → ∞,

where 𝐶𝑥 is the percolation cluster containing 𝑥 ∈ ℤ𝑑. The proof idea is simple, see [1, Chapter 4] for
details. By ergodicity of Bernoulli percolation under shifts, a suitable ergodic theorem implies

1
(2𝑛 + 1)𝑑 ∑

𝑥∈[−𝑛,𝑛]𝑑

1
#𝐶𝑥

→ 𝔼(1/#𝐶0) a.s. and in 𝐿1  as 𝑛 → ∞.

We conclude by noting that

∑
𝑥∈[−𝑛,𝑛]𝑑

1
#𝐶𝑥

= 𝐾𝑛 + ∑
𝑥∈[−𝑛,𝑛]𝑑:𝐶𝑥\[−𝑛,𝑛]𝑑≠∅

1
#𝐶𝑥

= 𝐾𝑛 + 𝑂(𝑛𝑑−1),

since 1/#𝐶𝑥 ≤ 1 for all 𝑥 ∈ ℤ𝑑 and because the number of clusters intersecting the boundary is clearly
bounded by the boundary’s size, which is 𝑂(𝑛𝑑−1).

The approach we are considering here will be similar – we will apply an ergodic theorem to well-
chosen functions and develop good estimates to control how far the ergodic averages are from the
quantities we would like to understand.

From now on, we will consider a centred Gaussian field 𝑓 = (𝑓(𝑥) : 𝑥 ∈ ℝ𝑑) with covariance
structure 𝔼(𝑓(𝑥)𝑓(𝑦)) = 𝐾(𝑥, 𝑦) and 𝐾(𝑥, 𝑥) > 0. The main assumption will be that 𝑓  is stationary
i.e. (𝑓(𝑥 + 𝑣) : 𝑥 ∈ ℝ𝑑) and 𝑓  having the same law for all 𝑣 ∈ ℝ𝑑; this is equivalent to 𝐾 being of the
form 𝐾(𝑥, 𝑦) = 𝑘(𝑥 − 𝑦). By Bochner’s theorem, one deduces that 𝑘 can be represented as

𝑘(𝑥) = ∫ 𝑒𝑖⟨𝑥,𝜁⟩𝜌(𝑑𝜁)

for a unique finite Borel measure 𝜌 on ℝ𝑑 called the spectral measure of 𝑓 .

Without loss of generality, we may restrict ourselves to the case 𝑘(0) = 1; indeed replacing 𝑓  by
(𝑘(0)−1/2𝑓(𝑥) : 𝑥 ∈ ℝ𝑑) will not affect the zero set.
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Example 1.1. A good example to keep in mind is the following: For 𝑑 = 1, consider 𝜁1, …, 𝜁𝑛 ∈
ℝ and 𝑤1, …, 𝑤𝑛 ≥ 0. Now define

𝜌 = ∑
𝑖

𝑤𝑖(𝛿𝜁𝑖
+ 𝛿−𝜁𝑖

), 𝑘(𝑥) = ∑
𝑖

𝑤𝑖 cos(𝜁𝑖𝑥)

and 𝑓(𝑥) = ∑
𝑖

√𝑤𝑖(𝑎𝑖 cos(𝜁𝑖𝑥) + 𝑏𝑖 sin(𝜁𝑖𝑥)),

where (𝑎𝑖, 𝑏𝑖 : 𝑖 = 1, …, 𝑛) are i.i.d. 𝑁(0, 1) random variables. Then 𝑓  has covariance 𝑘 and
spectral measure 𝜌. Intuitively, 𝜌 measures the variances of the individual Fourier modes (and in
the stationary case, they all decouple).

It is important to choose a good version of 𝑓 . A suitable space to consider is

𝐶1
∗ (ℝ𝑑) = {𝛼 ∈ 𝐶1(ℝ𝑑) : |𝛼(𝑥)| + |∇𝛼(𝑥)| > 0 ∀𝑥 ∈ ℝ𝑑},

which carries the 𝜎-algebra generated by 𝜋𝑣 : 𝐶1
∗ (ℝ𝑑) → ℝ given by 𝜋𝑣(𝛼) = 𝛼(𝑣) for 𝑣 ∈ ℝ𝑑.

Note that 𝛼 ∈ 𝐶1
∗ (ℝ𝑑) if and only if ∇𝛼(𝑥) ≠ 0 for all 𝑥 ∈ 𝑍(𝛼) which by the implicit function

theorem implies that 𝑍(𝛼) is a codimension 1 submanifold of ℝ𝑑. We let 𝑁(𝑣, 𝑟, 𝛼) be the number
of connected components of 𝑍(𝛼) contained in 𝐵𝑟(𝑣) and 𝑁#(𝑣, 𝑟, 𝛼) be the number of connected
components of 𝜕𝐵𝑟(𝑣) \ 𝑍(𝛼). We leave it as an exercise to prove that

𝑁 : ℝ𝑑 × (0, ∞) × 𝐶1
∗ (ℝ𝑑) → ℕ0 and 𝑁# : ℝ𝑑 × (0, ∞) × 𝐶1

∗ (ℝ𝑑) → ℕ0

are measurable. The aim of these notes is to prove the following (this is a special case of [2, Theorem 1]):

Theorem 1.2 (Nazarov, Sodin). Suppose that the spectral measure satisfies
1. ∫|𝜁|4 𝜌(𝑑𝜁) < ∞,
2. 𝜌 has no atoms,
3. the support of 𝜌 is not contained in any hyperplane.

Then 𝑓  has a version in 𝐶1
∗ (ℝ𝑑) and there exists 𝜈 ∈ [0, ∞) such that

1
𝜆(𝐵𝑅(0))

𝑁(0, 𝑅, 𝑓) → 𝜈 a.s. and in 𝐿1  as 𝑅 → ∞.

Some remarks on the assumptions: (i) will guarantee the existence of a 𝐶2−(ℝ𝑑) version of 𝑓 , (ii)
will imply ergodicity of 𝑓  under shifts and (iii) will then yield the existence of a 𝐶1

∗ (ℝ𝑑) version,
together with more quantitative results that will be key in establishing certain moment bounds. Also
note that 𝑘 ∈ 𝐶4(ℝ𝑑) is equivalent to (i), 𝑘(𝑥) → 0 as |𝑥| → 0 implies (ii), and rotational invariance
of the model implies (iii) (assuming (ii) and 𝑘 non-constant).

2. Sandwiching the number of nodal surfaces

Lemma 2.1. For 𝛼 ∈ 𝐶1
∗ (ℝ𝑑) and 0 < 𝑟 < 𝑅, we have

∫
𝐵𝑅−𝑟(0)

𝑁(𝑥, 𝑟, 𝛼)
𝜆(𝐵𝑟(0))

𝑑𝑥 ≤ 𝑁(0, 𝑅, 𝛼) ≤ ∫
𝐵𝑅+𝑟(0)

𝑁(𝑥, 𝑟, 𝛼)
𝜆(𝐵𝑟(0))

𝑑𝑥 + ∫
𝐵𝑅+𝑟(0)

𝑁#(𝑥, 𝑟, 𝛼)
𝜆(𝐵𝑟(0))

𝑑𝑥.
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Proof. Let 𝐶1, …, 𝐶𝑛 with 𝑛 = 𝑁(0, 𝑅, 𝛼) be the connected components of 𝑍(𝛼) contained in 𝐵𝑅(0).
Note that for each 𝑖,

∫
𝐵𝑅−𝑟(0)

1(𝐶𝑖 ⊂ 𝐵𝑟(𝑥))𝑑𝑥 ≤ 𝜆(𝐵𝑟(0)) ≤ ∫
𝐵𝑅+𝑟(0)

1(𝐶𝑖 ∩ 𝐵𝑟(𝑥) ≠ ∅)𝑑𝑥.

Summing this over 𝑖 yields

∫
𝐵𝑅−𝑟(0)

𝑁(𝑥, 𝑟, 𝛼)
𝜆(𝐵𝑟(0))

𝑑𝑥 ≤ 𝑁(0, 𝑅, 𝛼)

≤ ∫
𝐵𝑅+𝑟(0)

𝑁(𝑥, 𝑟, 𝛼)
𝜆(𝐵𝑟(0))

𝑑𝑥 + ∫
𝐵𝑅+𝑟(0)

𝐴(𝑥)
𝜆(𝐵𝑟(0))

𝑑𝑥,

where 𝐴(𝑥) = #{1 ≤ 𝑖 ≤ 𝑛 : 𝐶𝑖 ⊄ 𝐵𝑟(𝑥), 𝐶𝑖 ∩ 𝐵𝑟(𝑥) ≠ ∅}. Note that for a.e. 𝑥 ∈ 𝐵𝑅+𝑟(0), each 𝐶𝑖
with 𝐶𝑖 ⊄ 𝐵𝑟(𝑥) and 𝐶𝑖 ∩ 𝐵𝑟(𝑥) ≠ ∅ is nowhere tangent to 𝜕𝐵𝑟(𝑥) so that then 𝐶𝑖 divides 𝜕𝐵𝑟(𝑥)
into at least two components; and therefore, since the sets 𝐶𝑖 are disjoint, we deduce that 𝐴(𝑥) ≤
𝑁#(𝑥, 𝑟, 𝛼). □
Both the left- and the right-hand side of the sandwich estimate look promising for an application of
an ergodic theorem. Before establishing integrability of the terms in the integrals, we state the ergodic
theorem we are going to use, together with a criterion for ergodicity.

3. Ergodic theorem

Theorem 3.1 (Wiener’s ergodic theorem). Let (𝐸, ℰ) be a measure space and moreover let
(𝜏𝑣 : 𝐸 → 𝐸 : 𝑣 ∈ ℝ𝑑) a family of maps such that (𝑣, 𝑥) ↦ 𝜏𝑣(𝑥) is measurable from ℝ𝑑 × 𝐸 to
𝐸. Moreover define ℐ = {𝐴 ∈ ℰ : 𝜏−1

𝑣 (𝐴) = 𝐴 ∀𝑣 ∈ ℝ𝑑}. Let 𝜉 be a random variable in 𝐸 s.t. 𝜏𝑣
and 𝜉 have the same law for all 𝑣 ∈ ℝ𝑑. Then for any 𝛼 : 𝐸 → ℝ with 𝛼(𝜉) ∈ 𝐿1 we have

1
𝜆(𝐵𝑅(0))

∫
𝐵𝑅(0)

𝛼(𝜏𝑣𝜉)𝑑𝑣 → 𝔼(𝛼(𝜉) | 𝜉−1ℐ) a.s. and in 𝐿1  as 𝑅 → ∞.

Note that in the ergodic case 𝜉−1ℐ is (by definition) trivial so that the limit is a constant, namely
𝔼(𝛼(𝜉) | 𝜉−1ℐ) = 𝔼(𝛼(𝜉)).

Proof. Omitted, see [3, Theorems 2 and 3]. □

Theorem 3.2 (Fomin, Grenander, Maruyama). Define 𝜏𝑣 : 𝐶(ℝ𝑑) → 𝐶(ℝ𝑑) by 𝜏𝑣(𝛼) = 𝛼 ⋅ +𝑣
and 𝜋𝑣 : 𝐶(ℝ𝑑) → ℝ by 𝜋𝑣(𝛼) = 𝛼𝑣 whenever 𝑣 ∈ ℝ𝑑. Consider a set 𝐸 ⊂ 𝐶(ℝ𝑑) which is
invariant under 𝜏𝑣 for all 𝑣 ∈ ℝ𝑑 and endow it with ℰ = 𝜎(𝜋𝑣|𝐸 : 𝑣 ∈ ℝ𝑑). If 𝑓 ∈ 𝐸 is a stationary
Gaussian field and its spectral measure 𝜌 has no atoms, then 𝑓−1ℐ is trivial.

Proof. Assume that 𝐴 ∈ ℰ is such that 𝜏−1
𝑣 (𝐴) = 𝐴 for all 𝑣 ∈ ℝ𝑑, then we need to show that

ℙ(𝑓 ∈ 𝐴) ∈ {0, 1}. There are 𝑥𝑘 ∈ ℝ𝑑 (where 𝑘 ≥ 1) and functions 𝛼𝑘 : ℝ𝑘 → [0, 1] such that
𝛼𝑘(𝜋𝑥1

, …, 𝜋𝑥𝑘
) ↑ 1𝐴 as 𝑘 → ∞. Then

ℙ(𝑓 ∈ 𝐴) = ℙ(𝑓 ∈ 𝐴, 𝜏𝑣𝑓 ∈ 𝐴)

≤ 𝔼(𝛼𝑘(𝑓𝑥1
, …, 𝑓𝑥𝑘

)𝛼𝑘(𝑓𝑥1+𝑣, …, 𝑓𝑥𝑘+𝑣))

+2𝔼|1(𝑓 ∈ 𝐴) − 𝛼𝑘(𝑓𝑥1
, …, 𝑓𝑥𝑘

)|.
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It suffices to show lim inf|𝑣| →∞ cov(𝛼𝑘(𝑓𝑥1
, …, 𝑓𝑥𝑘

), 𝛼𝑘(𝑓𝑥1+𝑣, …, 𝑓𝑥𝑘+𝑣))) = 0 since this implies

ℙ(𝑓 ∈ 𝐴) ≤ 𝔼(𝛼𝑘(𝑓𝑥1
, …, 𝑓𝑥𝑘

))
2

+ 2𝔼|1(𝑓 ∈ 𝐴) − 𝛼𝑘(𝑓𝑥1
, …, 𝑓𝑥𝑘

)|

→ ℙ(𝑓 ∈ 𝐴)2 as 𝑘 → ∞,

hence ℙ(𝑓 ∈ 𝐴) ∈ {0, 1}. To see this, observe that for 𝑐 = max𝑖𝑗|𝑥𝑖 − 𝑥𝑗|,

1
𝜆(𝐵𝑅(0))

∫
𝐵𝑅(0)

∑
𝑖𝑗

𝑘(𝑥𝑖 − 𝑥𝑗 + 𝑣)2𝑑𝑣

≤
𝑘2

𝜆(𝐵𝑅(0))
∫

𝐵𝑅+𝑐(0)
𝑘(𝑥)2𝑑𝑥 → 𝑘2 ∑

𝜁∈ℝ𝑑

𝜌({𝜁})2 = 0

as 𝑅 → ∞ where the convergence above follows from Wiener’s lemma. Therefore
lim inf|𝑣| →∞ ∑𝑖𝑗 𝑘(𝑥𝑖 − 𝑥𝑗 + 𝑣)2 = 0 and the result follows. □

4. Versions and moment bounds
By assumption (i), the covariance function 𝑘 is in 𝐶4(ℝ𝑑). By Kolmogorov’s extension theorem, this
implies that 𝑓  has a 𝐶2−(ℝ𝑑) version and (switching to such a version), the Hölder norm

‖𝑓‖𝐵𝑟(𝑥),1+𝛽 = sup
𝐵𝑟(𝑥)

|𝑓| + sup
𝐵𝑟(𝑥)

|∇𝑓| + sup
𝑣,𝑤∈𝐵𝑟(𝑥):𝑣≠𝑤

|∇𝑓(𝑣) − ∇𝑓(𝑤)|
|𝑣 − 𝑤|𝛽

has a Gaussian tail and hence moments of all orders 𝑝 < ∞ for 𝑟 > 0 and 𝑥 ∈ ℝ𝑑 whenever 𝛽 ∈ (0, 1).
The key in the proofs of this section will be the definition of the following functions:

Φ(𝑥) = |𝑓(𝑥)|−𝑡|∇𝑓(𝑥)|−𝑡𝑑

Ψ(𝑥) = |𝑓(𝑥)|−𝑡 |∇𝑆𝑓(𝑥)|−𝑡(𝑑−1) (𝑥 ≠ 0).

Here, ∇𝑆𝑓(𝑥) = ∇𝑓(𝑥) − ⟨∇𝑓(𝑥), 𝑥⟩𝑥/|𝑥|2 is the projection of ∇𝑓(𝑥) onto the plane perpendicular
to 𝑥. Let us make the following observation.

Lemma 4.1. For each 𝑥 ∈ ℝ𝑑, 𝑓(𝑥) and ∇𝑓(𝑥) are independent and the law of (𝑓(𝑥), ∇𝑓(𝑥)) is
non-degenerate. Moreover, for 𝑡𝑝 < 1, 𝔼Φ(0)𝑝, 𝔼Ψ(0)𝑝 < ∞.

Proof. We have 𝔼(𝑓(𝑥)𝜕𝑖𝑓(𝑥)) = 𝜕𝑖𝑘(0) but by definition, 𝑘(𝑥) = 𝑘(−𝑥) and hence 𝜕𝑖𝑘(0) = 0.
By independence, it is enough to show that ∇𝑓(𝑥) is non-degenerate (recall that 𝑓(𝑥) ∼ 𝑁(0, 1)).
Suppose not, then since it is Gaussian, there exists 𝑣 ∈ ℝ𝑑 \ {0} such that ⟨∇𝑓(𝑥), 𝑣⟩ = 0 a.s. and
hence

0 = 𝔼⟨∇𝑓(𝑥), 𝑣⟩2 = − ∑
𝑖𝑗

𝑣𝑖𝑣𝑗𝜕𝑖𝑗𝑘(0) = ∫⟨𝑣, 𝜁⟩2𝜌(𝑑𝜁)

so that the support of 𝜌 is contained in the hyperplane perpendicular to 𝑣 which contradicts assumption
(iii). The last claim follows from 𝔼 |𝑋|−𝛼 < ∞ for 𝑋 ∼ 𝑁(0, 𝐼𝑛) and 𝛼 < 𝑛 combined with a change
of variables. □

Lemma 4.2. Almost surely |𝑓(𝑥)| + |∇𝑓(𝑥)| > 0 for all 𝑥 ∈ ℝ𝑑.

Proof. Fix 𝑅 > 0. For 𝑡 < 1 we get
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∞ > 𝑅𝑑𝔼Φ(0) = 𝔼 ∫
𝐵𝑅(0)

Φ(𝑥)𝑑𝑥 = 𝔼 ∫
𝐵𝑅(0)

|𝑓(𝑥)|−𝑡|∇𝑓(𝑥)|−𝑡𝑑 𝑑𝑥.

If 𝑓(𝑥0) = 0 and ∇𝑓(𝑥0) = 0 at some point 𝑥0 ∈ 𝐵𝑅(0), then

∫
𝐵𝑅(0)

|𝑓(𝑥)|−𝑡|∇𝑓(𝑥)|−𝑡𝑑 𝑑𝑥 ≥ ∫
𝐵𝑅(0)

‖𝑓‖−𝑡(1+𝑑)
𝐵𝑅(0),1+𝛽|𝑥 − 𝑥0|−𝑡(1+𝑑𝛽) 𝑑𝑥.

Take 𝑡, 𝛽 ∈ (0, 1) so that 𝑑 > 𝑡(1 + 𝑑𝛽); then the last integral diverges and hence a.s. there is no such
point 𝑥0. □

Proposition 4.3. There exists a constant 𝐶 > 0 such that for all 𝑅 ≥ 1, 𝔼𝑁(0, 𝑅, 𝑓) ≤ 𝐶𝑅𝑑 and
𝔼𝑁#(0, 𝑅, 𝑓) ≤ 𝐶𝑅𝑑−1.

Proof. We first prove 𝔼𝑁(0, 𝑅, 𝑓) ≤ 𝐶𝑅𝑑. Let 𝐶1, …, 𝐶𝑛 be the connected components of 𝐵𝑅(0) \
𝑍(𝑓) which have their closure contained in 𝐵𝑅(0). Then 𝑁(0, 𝑅, 𝑓) ≤ 𝑛. Pick 𝑧𝑖 ∈ 𝐶𝑖 such that
∇𝑓(𝑧𝑖) = 0 and let 𝑟𝑖 = 𝑑(𝑧𝑖, 𝜕𝐶𝑖). Then 𝐵𝑟𝑖

(𝑧𝑖) ⊂ 𝐶𝑖 and 𝜕𝐵𝑟𝑖
(𝑧𝑖) ∩ 𝜕𝐶𝑖 ∋ 𝑥𝑖, say. Thus

|𝑓(𝑥)| ≤ ‖𝑓‖𝐵𝑟𝑖(𝑧𝑖),1+𝛽 |𝑥 − 𝑥𝑖| and |∇𝑓(𝑥)| ≤ ‖𝑓‖𝐵𝑟𝑖(𝑧𝑖),1+𝛽 |𝑥 − 𝑧𝑖|𝛽

for 𝑥 ∈ 𝐵𝑟𝑖
(𝑧𝑖). If 𝑟𝑖 ≤ 1,

∫
𝐵𝑟𝑖(𝑧𝑖)

Φ = ∫
𝐵𝑟𝑖(𝑧𝑖)

𝑑𝑥
|𝑓(𝑥)|𝑡 |∇𝑓(𝑥)|𝑡𝑑

≥ ‖𝑓‖−𝑡(1+𝑑)
𝐵𝑟𝑖(𝑧𝑖),1+𝛽 ∫

𝐵𝑟𝑖(𝑧𝑖)

𝑑𝑥
|𝑥 − 𝑥𝑖|𝑡|𝑥 − 𝑧𝑖|𝑡𝑑𝛽

≥ 𝐶 ‖𝑓‖−𝑡(1+𝑑)
𝐵𝑟𝑖(𝑧𝑖),1+𝛽 𝑟𝑑−𝑡(1+𝑑𝛽)

𝑖

for a constant 𝐶 > 0.

Choose 𝑡, 𝛽 ∈ (0, 1) with 𝑑 − 𝑡(1 + 𝑑𝛽) ≤ 0, which implies 𝑟𝑑−𝑡(1+𝑑𝛽)
𝑖 ≥ 1. Moreover, the number

of 𝑖 for which 𝑟𝑖 > 1 is clearly bounded by 𝜆(𝐵𝑅(0))/𝜆(𝐵1(0)) = 𝑅𝑑, so that by summing over 𝑖
we get

𝑁(0, 𝑅, 𝑓) ≤ 𝑛 ≤ 𝑅𝑑 + 𝐶−1 ∑
𝑖:𝑟𝑖≤1

‖𝑓‖𝑡(1+𝑑)
𝐵𝑟𝑖(𝑧𝑖),1+𝛽 ∫

𝐵𝑟𝑖(𝑧𝑖)
Φ

≤ 𝑅𝑑 + 𝐶−1 ∑
𝑖:𝑟𝑖≤1

∫
𝐵𝑟𝑖(𝑧𝑖)

Φ(𝑥) ‖𝑓‖𝑡(1+𝑑)
𝐵2𝑟𝑖(𝑥),1+𝛽 𝑑𝑥

≤ 𝑅𝑑 + 𝐶−1 ∫
𝐵𝑅(0)

Φ(𝑥) ‖𝑓‖𝑡(1+𝑑)
𝐵2(𝑥),1+𝛽 𝑑𝑥.

By taking expectations, using stationarity and observing

𝔼(Φ(0) ‖𝑓‖𝑡(1+𝑑)
𝐵2(0),1+𝛽) ≤ 𝔼(Φ(0)𝑝)1/𝑝𝔼(‖𝑓‖𝑡𝑞(1+𝑑)

𝐵2(0),1+𝛽)
1/𝑞

< ∞

for 𝑝 ∈ (1, 1/𝑡) and 1/𝑝 + 1/𝑞 = 1, we obtain the claim.

The proof of the second assertion is entirely analogous: There, one lets 𝐶1, …, 𝐶𝑛 with 𝑛 =
𝑁#(0, 𝑅, 𝑓) be the connected components of 𝜕𝐵𝑅(0) \ 𝑍(𝑓), takes 𝑧𝑖 ∈ 𝐶𝑖 such that ∇𝑆𝑓(𝑧𝑖) = 0
(e.g. by taking 𝑧𝑖 such that |𝑓(𝑧𝑖)| = sup𝐶𝑖

|𝑓|), defines 𝑟𝑖 = 𝑑(𝑧𝑖, 𝜕𝐶𝑖) and chooses 𝑥𝑖 ∈ 𝜕𝐵𝑟𝑖
(𝑥𝑖) ∩

𝜕𝐶𝑖 with 𝜕𝐶𝑖 being the boundary of 𝐶𝑖 within the sphere 𝜕𝐵𝑅(0). Let us write 𝜎 for the (non-
normalised) surface measure supported on 𝜕𝐵𝑅(0). We note that for 𝑥, 𝑦 ∈ 𝐵𝑟𝑖

(𝑧𝑖),
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|∇𝑆𝑓(𝑥) − ∇𝑆𝑓(𝑦)| ≤ |∇𝑓(𝑥) − ∇𝑓(𝑦)| + |⟨𝑥, ∇𝑓(𝑥)⟩
𝑥

𝑅2 − ⟨𝑦, ∇𝑓(𝑦)⟩
𝑦

𝑅2 |

≤ ‖𝑓‖𝐵𝑟𝑖(𝑧𝑖),1+𝛽 (2 ⋅ |𝑥 − 𝑦|𝛽 +
2
𝑅

⋅ |𝑥 − 𝑦|)

≤ 𝐶‖𝑓‖𝐵𝑟𝑖(𝑧𝑖),1+𝛽 |𝑥 − 𝑦|𝛽

for some universal constant 𝐶 > 0. Then for 𝑟𝑖 ≤ 1,

∫
𝐵𝑟𝑖(𝑧𝑖)

Ψ(𝑥)𝜎(𝑑𝑥) = ∫
𝐵𝑟𝑖(𝑧𝑖)

𝜎(𝑑𝑥)
|𝑓(𝑥)|𝑡 |∇𝑆𝑓(𝑥)|𝑡(𝑑−1)

≥ 𝐶−𝑡(𝑑−1)‖𝑓‖−𝑡𝑑
𝐵𝑟𝑖(𝑧𝑖),1+𝛽 ∫

𝐵𝑟𝑖(𝑧𝑖)

𝜎(𝑑𝑥)
|𝑥 − 𝑥𝑖|𝑡|𝑥 − 𝑧𝑖|𝑡𝛽(𝑑−1)

≥ 𝐶′ ‖𝑓‖−𝑡𝑑
𝐵𝑟𝑖(𝑧𝑖),1+𝛽 𝑟𝑑−1−𝑡(1+𝛽(𝑑−1))

𝑖

for some 𝐶′ > 0. Choose 𝑡, 𝛽 ∈ (0, 1) such that 𝑑 − 1 − 𝑡(1 + 𝛽(𝑑 − 1)) ≤ 0. Again, we note that
the number of 𝑖 with 𝑟𝑖 > 1 is bounded by 𝜎(𝜕𝐵𝑅(0))/𝜎(𝐵1(𝑅, 0, …, 0)) = 𝑂(𝑅𝑑−1). Therefore, for
some constant 𝐶″ > 0,

𝑁#(0, 𝑅, 𝑓) = 𝑛 ≤ 𝐶″

⎝
⎜⎛𝑅𝑑−1 + ∑

𝑖:𝑟𝑖≤1
‖𝑓‖𝑡𝑑

𝐵𝑟𝑖(𝑧𝑖),1+𝛽 ∫
𝐵𝑟𝑖(𝑧𝑖)

Ψ(𝑥)𝜎(𝑑𝑥)
⎠
⎟⎞

and one concludes the proof in the same way as in the first case. □

5. Proof of the main theorem
Proof. From the previous section, we know that 𝑓  has a 𝐶1

∗ (ℝ𝑑) version, that 𝑁(0, 𝑟, 𝑓) and
𝑁#(0, 𝑟, 𝑓) are integrable for each 𝑟 > 0 and that

𝔼𝑁(0, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

= 𝑂(1) and
𝔼𝑁#(0, 𝑟, 𝑓)

𝜆(𝐵𝑟(0))
= 𝑂(

1
𝑟
) (1)

as 𝑟 → ∞. In particular, we can take a sequence 𝑟𝑘 → ∞ such that 𝜆(𝐵𝑟𝑘
(0))

−1
𝔼𝑁(0, 𝑟𝑘, 𝑓) → 𝜈 as

𝑘 → ∞ for some 𝜈 ∈ [0, ∞). Using the sandwich estimate, we get

|
𝑁(0, 𝑅, 𝑓)
𝜆(𝐵𝑅(0))

− 𝜈| ≤ |
𝑁(0, 𝑅, 𝑓)
𝜆(𝐵𝑅(0))

−
𝔼𝑁(0, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

| + |
𝔼𝑁(0, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

− 𝜈|

≤ |
(1 − 𝑟

𝑅)𝑑

𝜆(𝐵𝑅−𝑟(0))
∫

𝐵𝑅−𝑟(0)

𝑁(𝑥, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

𝑑𝑥 −
𝔼𝑁(0, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

|

+|
(1 + 𝑟

𝑅)𝑑

𝜆(𝐵𝑅+𝑟(0))
∫

𝐵𝑅+𝑟(0)

𝑁(𝑥, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

𝑑𝑥 −
𝔼𝑁(0, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

|

+|
(1 + 𝑟

𝑅)𝑑

𝜆(𝐵𝑅+𝑟(0))
∫

𝐵𝑅+𝑟(0)

𝑁#(𝑥, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

𝑑𝑥 −
𝔼𝑁#(0, 𝑟, 𝑓)

𝜆(𝐵𝑟(0))
|

+|
𝔼𝑁(0, 𝑟, 𝑓)
𝜆(𝐵𝑟(0))

− 𝜈| +
𝔼𝑁#(0,𝑟,𝑓)

𝜆(𝐵𝑟(0))
.
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For fixed 𝑟 > 0, the first three terms on the right-hand side of the estimate tend to 0 a.s. and in 𝐿1 as
𝑅 → ∞ by our ergodic theorem; indeed 𝑁(𝑥, 𝑟, 𝑓) = 𝑁(0, 𝑟, 𝜏𝑣𝑓) and 𝑁#(𝑥, 𝑟, 𝑓) = 𝑁#(0, 𝑟, 𝜏𝑣𝑓),
also integrability follows from (1), ergodicity from assumption (i) and finally it is easy to control the
effect of the (1 ± 𝑟/𝑅)𝑑 terms (separately in the a.s. and 𝐿1 case).

Also, by taking 𝑟 = 𝑟𝑘, the last two terms tend to 0 as 𝑘 → ∞ (uniformly in 𝑅, trivially). Both in
the a.s. and in the 𝐿1 case, it is easy to combine the two results above to finish the proof. □

Remark 5.1. The sandwich estimate also holds with 𝑁(0, 𝑅, 𝛼) replaced by the number of
connected components of 𝑍(𝛼) intersecting 𝐵𝑅(0) and one can then easily check that the
analogous law of large numbers (also a.s. and in 𝐿1) holds with the same limit 𝜈 ≥ 0.
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