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1. Introduction
Derivative pricing is an important application of stochastic calculus and in this short note, we are
going to explain how to do so using replicating portfolios. We will assume that the reader is fluent in
stochastic analysis but see any good textbook like [1] or [2] on the topic.

We focus here on the very simplest setting and refer the reader to [3] for a very nice introduction
into more complicated cases – the formalism however remains identical. In this note, for the sake of
conciseness, we ignore technical details somewhat but they are not hard to add.

Let (𝑊𝑡) be a standard Brownian motion, let (ℱ𝑡) be the filtration it generates and let us suppose
that the asset price follows the SDE 𝑑𝑆𝑡 = 𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡) and we have a bond 𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡 where
𝑟 ∈ ℝ is the interest rate, 𝜇 ∈ ℝ is the bias for the stock price and 𝜎 > 0 is the volatility.

Suppose that 𝑉 ∗𝑇  is a derivative which is measurable with respect to ℱ𝑇  for some time horizon 𝑇 ≥
0 and we wish to determine its fair price. The idea of finding the fair price is via a replicating portfolio
and goes as follows:

• We want to find adapted and continuous processes (𝑎𝑡) and (𝑏𝑡) such that 𝑉𝑡 ≔ 𝑎𝑡𝑆𝑡 + 𝑏𝑡𝐵𝑡 satisfies
𝑉𝑇 = 𝑉 ∗𝑇 . We call ((𝑎𝑡), (𝑏𝑡)) the replicating portfolio since we are replicating the derivative by
holding certain amounts of stocks and bonds to model the derivative. The adaptedness condition
exactly captures that the replicating strategy does not look into the future which is of course crucial.

• We need the replicating portfolio to be self-financing. For this to be the case, we intuitively need that
𝑎𝑡𝑆𝑡+𝛿 + 𝑏𝑡𝐵𝑡+𝛿 = 𝑎𝑡+𝛿𝑆𝑡+𝛿 + 𝑏𝑡+𝛿𝐵𝑡+𝛿 and this yields on a more formal level the self-financing
condition

𝑑𝑉𝑡 = 𝑎𝑡𝑑𝑆𝑡 + 𝑏𝑡𝑑𝐵𝑡. (1)
• The fair price is then given by 𝑉0 = 𝑎0𝑆0 + 𝑏0𝐵0. Indeed, if the price was anything else, then

this would yield an arbitrage opportunity because two equivalent assets, the derivative and the
replicating portfolio, would be offered at different prices on the market.

There are two approaches to finding (𝑉𝑡). One goes via an explicit Itô calculation and yields the Black-
Scholes equation, the other one goes via a clever insight into performing a change of measure (and is
the starting point to the theory of equivalent martingale measures).

2. Black-Scholes equation
Suppose now that 𝑉𝑡 = 𝑉 (𝑡, 𝑆𝑡) for some function 𝑉 . Then we can use Itô’s formula to compute

𝑑𝑉 (𝑡, 𝑆𝑡) = (𝜕𝑡𝑉 (𝑡, 𝑆𝑡) + 𝜇𝑆𝑡𝜕𝑠𝑉 (𝑡, 𝑆𝑡) + (𝜎2
𝑆2𝑡
2
)𝜕𝑠𝑠𝑉 (𝑡, 𝑆𝑡))𝑑𝑡

+𝜎𝑆𝑡𝜕𝑠𝑉 (𝑡, 𝑆𝑡)𝑑𝑊𝑡

and by comparing terms with the self-financing condition (1), we get 𝑎𝑡 = 𝜕𝑠𝑉 (𝑡, 𝑆𝑡) and
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𝑏𝑡𝑟𝐵𝑡 + 𝑎𝑡𝜇𝑆𝑡 = 𝜕𝑡𝑉 (𝑡, 𝑆𝑡) + 𝜇𝑆𝑡𝜕𝑠𝑉 (𝑡, 𝑆𝑡) + (𝜎2
𝑆2𝑡
2
)𝜕𝑠𝑠𝑉 (𝑡, 𝑆𝑡)

Using that 𝑏𝑡𝐵𝑡 = 𝑉 (𝑡, 𝑆𝑡) − 𝑎𝑡𝑆𝑡 and 𝑎𝑡 = 𝜕𝑠𝑉 (𝑡, 𝑆𝑡) we are thus led to the Black-Scholes equation

𝜕𝑡𝑉 (𝑡, 𝑠) + 𝑟𝑠𝜕𝑠𝑉 (𝑡, 𝑠) + (𝜎2𝑠2/2)𝜕𝑠𝑠𝑉 (𝑡, 𝑠) = 𝑟𝑉 (𝑡, 𝑠).

The boundary condition we specify is 𝑠 ↦ 𝑉 (𝑇 , 𝑠). After solving the PDE, we can read off the fair
price and it is given by 𝑉 (0, 𝑆0).

3. Equivalent martingale measures
The fact that there is no dependence on 𝜇 in the Black-Scholes formula is not surprising since the
computation is robust under Girsanov changes of measure.

We perform a Girsanov change of measure such that under the new measure ℚ, the process
(𝑒−𝑟𝑡𝐴𝑡 : 𝑡 ≤ 𝑇) is a martingale for all assets 𝐴, so for 𝐴 ∈ {𝑆,𝐵} in our setting. Note that the
martingale property trivially holds for 𝐵 since (𝑒−𝑟𝑡𝐵𝑡) is a constant process (and this is in fact what
forces us to take the 𝑒−𝑟𝑡 factor here).

Recall that 𝑉𝑡 = 𝑎𝑡𝑆𝑡 + 𝑏𝑡𝐵𝑡 and 𝑑𝑉𝑡 = 𝑎𝑡𝑑𝑆𝑡 + 𝑏𝑡𝑑𝐵𝑡. We claim that (𝑒−𝑟𝑡𝑉𝑡 : 𝑡 ≤ 𝑇) is also a
martingale. Indeed,

𝑑(𝑒−𝑟𝑡𝑉𝑡) = 𝑒−𝑟𝑡𝑑𝑉𝑡 − 𝑟𝑒−𝑟𝑡𝑉𝑡𝑑𝑡

= 𝑒−𝑟𝑡(𝑎𝑡𝑑𝑆𝑡 + 𝑏𝑡𝑑𝐵𝑡) − 𝑟𝑒−𝑟𝑡(𝑎𝑡𝑆𝑡 + 𝑏𝑡𝐵𝑡)𝑑𝑡
= 𝑎𝑡(𝑒−𝑟𝑡𝑑𝑆𝑡 − 𝑟𝑒−𝑟𝑡𝑆𝑡𝑑𝑡) + 𝑏𝑡(𝑒−𝑟𝑡𝑑𝐵𝑡 − 𝑟𝑒−𝑟𝑡𝐵𝑡𝑑𝑡)

= 𝑎𝑡𝑑(𝑒−𝑟𝑡𝑆𝑡) + 𝑏𝑡𝑑(𝑒−𝑟𝑡𝐵𝑡)

implies that (𝑒−𝑟𝑡𝑉𝑡 : 𝑡 ≤ 𝑇) is a martingale. Therefore by the martingale property we get the fair price

𝑉0 = 𝔼ℚ(𝑒−𝑟𝑇𝑉𝑇 ) = 𝑒−𝑟𝑇𝔼ℚ(𝑉 ∗𝑇 ). (2)

If we let

𝑑ℚ
𝑑ℙ

= exp(
𝑟 − 𝜇
𝜎
𝑊𝑇 −

(𝑟 − 𝜇)2

2𝜎2
𝑇)

then by Girsanov’s theorem under ℚ the process (𝑊𝑡 : 𝑡 ≤ 𝑇 ) is a standard Brownian motion with
drift (𝑟 − 𝜇)/𝜎, say 𝑊𝑡 = 𝑊 ′

𝑡 + 𝑡(𝑟 − 𝜇)/𝜎 for 𝑡 ≤ 𝑇  where (𝑊 ′
𝑡 ) is a standard Brownian motion

(with no drift) under ℚ. Then

𝑆𝑡 = 𝑆0𝑒𝜎𝑊
′
𝑡+(𝑟−𝜎2/2)𝑡 and 𝐵𝑡 = 𝐵0𝑒𝑟𝑡

for 𝑡 ≤ 𝑇  and using (2) we can then simply compute expectations in order to find the fair price 𝑉0 for
the derivative with payout 𝑉 ∗𝑇  at time 𝑇 .

The entire story is easily modifiable for instance to the case of a model with dividends, i.e. in a small
time interval 𝑑𝑡 we are being paid a dividend 𝛿𝑎𝑡𝑆𝑡𝑑𝑡. In this case, we can either change the self-
financing condition to 𝑑𝑉𝑡 = 𝑎𝑡𝑑𝑆𝑡 + 𝑏𝑡𝑑𝐵𝑡 + 𝛿𝑎𝑡𝑆𝑡𝑑𝑡 or simply say that if we define a new asset 𝑆′
where all dividends are instantaneously reinvested, we have 𝑆′𝑡 = 𝑒𝛿𝑡𝑆𝑡 and we can take the above
normal analysis and directly apply it there.
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