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1. Introduction
The two big paradigms in quantum computing are changes of basis (quantum Fourier transformations
being the most prominent instance of this, enabling things like phase estimation), and amplification
techniques like in Grover’s algorithm. All these algorithms can be unified in a rather satisfying theory
as exposed in [1], [2] and [3] (see in particular this last one for the case of phase estimation and Shor’s
algorithm). The goal of this short note is to present the main idea behind the constructions and show
how they can be used to realize the Grover speedup as a simple example.

Suppose we have 𝑛 qubits and 𝐴 is an 𝑘 × 𝑙 matrix where 𝑘, 𝑙 ≤ 2𝑛. Essentially, we want to
implement linear algebra operations on 𝐴 on a quantum computer (ideally with some speedups).
Suppose that 𝑈  is a unitary acting on the 𝑛 qubits, |𝜓𝐼

1⟩, …, |𝜓𝐼
𝑙 ⟩ and |𝜓𝑂

1 ⟩, …, |𝜓𝑂
𝑘 ⟩ are two sequences

of orthonormal states (the 𝐼  and 𝑂 stand for “in” and “out” respectively) and

𝐴𝑖𝑗 = ⟨𝜓𝑂
𝑖 |𝑈|𝜓𝐼

𝑗⟩ for all 𝑖 ≤ 𝑘, 𝑗 ≤ 𝑙.

One calls this a block embedding of 𝐴 into 𝑈 .

Let Π𝐼  be the orthogonal projection onto 𝑉𝐼 ≔ ⟨|𝜓𝐼
1⟩, …, |𝜓𝐼

𝑙 ⟩⟩ and define Π𝑂 and 𝑉𝑂 analogously.
Let us take a singular value decomposition of 𝐴, so there are orthonormal bases |𝑢𝐼

1⟩, …, |𝑢𝐼
𝑙 ⟩ and

|𝑢𝑂
1 ⟩, …, |𝑢𝑂

𝑙 ⟩ of 𝑉𝐼  and 𝑉𝑂 respectively and 𝜆1, …, 𝜆𝑘∧𝑙 ∈ [0, 1] such that

𝜆𝑗𝛿𝑖𝑗 = ⟨𝑢𝑂
𝑖 |𝑈|𝑢𝐼

𝑗⟩ for all 𝑖 ≤ 𝑘, 𝑗 ≤ 𝑙. (1)

Our ultimate goal will be the following: Suppose that 𝑓 : [0, 1] → ℂ is some function with 𝑓(0) = 0.
The question is in which cases can we build a unitary 𝑈𝑓  using oracle access to 𝑈  and 𝑈† such that

𝑓(𝜆𝑗)𝛿𝑖𝑗 = ⟨𝑢𝑂
𝑖 |𝑈𝑓 |𝑢𝐼

𝑗⟩ for all 𝑖 ≤ 𝑘, 𝑗 ≤ 𝑙.

i.e. we are applying the function 𝑓  to the singular values of 𝐴, and how many oracle accesses are
necessary to achieve this. For instance, if 𝐴 is a square matrix and invertible then

((𝐴𝑇 )−1)
𝑖𝑗

= ⟨𝜓𝑂
𝑖 |𝑈𝜆↦1(𝜆>0)/𝜆|𝜓𝐼

𝑗⟩.

This does not quite work since 𝑈𝜆↦1(𝜆>0)/𝜆 can actually not be implemented using the procedure
described below but on a domain which is a positive distance away from 0 we can approximate
𝑓0(𝜆) = 1(𝜆 > 0)/𝜆 by a function 𝑓  for which 𝑈𝑓  can be constructed. Filling in all the details yields the
singular value decomposition version of the HHL algorithm (named after Harrow, Hassidim and Lloyd
who first introduced matrix inversion on quantum computers using a somewhat different algorithm),
see [1] for details.
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2. Construction
For 𝜃 ∈ ℝ we first explain how to implement the unitary exp(𝑖𝜃(2Π𝐼 − 𝐼)) and exp(𝑖𝜃(2Π𝑂 − 𝐼)).
This is easy to do. Indeed, we introduce one ancilla qubit (so that we now have 𝑛 + 1 qubits in total)
and let

𝐹𝐼 |𝜓⟩|𝑖⟩ = (Π𝐼 |𝜓⟩)|𝑖⟩ + ((𝐼 − Π𝐼)|𝜓⟩)|𝑖 ⊕ 1⟩,

i.e. we are flipping the ancilla bit if the state |𝜓⟩ is in the orthogonal complement of the subspace and
are leaving it unchanged if |𝜓⟩ is in the subspace, extending this linearly. We need to assume that we
can implement this as a quantum circuit in our case. Then

(𝑒𝑖𝜃(2Π𝐼−𝐼)|𝜓⟩) ⊗ |0⟩ = (𝐹𝐼(𝐼 ⊗ 𝑒𝑖𝜃𝑍)𝐹𝐼)|𝜓⟩|0⟩.

The case with Π𝐼  replaced by Π𝑂 is the same. By (1) we get

𝑈|𝑢𝐼
𝑗⟩ − 𝜆𝑗|𝑢𝑂

𝑗 ⟩ ∈ 𝑉 ⟂
𝑂 ∀𝑗 ≤ 𝑘 ∧ 𝑙,

𝑈|𝑢𝐼
𝑗⟩ ∈ 𝑉 ⟂

𝑂 ∀𝑘 ∧ 𝑙 < 𝑗 ≤ 𝑙.

We now consider three distinct cases:

• If 𝑘 ∧ 𝑙 < 𝑗 ≤ 𝑙 we let 𝑈|𝑢𝐼
𝑗⟩ ≕ |𝑣𝑂

𝑗 ⟩ ∈ 𝑉 ⟂
𝑂 .

• If 𝑗 ≤ 𝑘 ∧ 𝑙 and 𝜆𝑗 = 1, then we simply have 𝑈|𝑢𝐼
𝑗⟩ = |𝑢𝑂

𝑗 ⟩ ∈ 𝑉𝑂.
• If 𝑗 ≤ 𝑘 ∧ 𝑙 and 𝜆𝑗 ≠ 1, then we define |𝑣𝑂

𝑗 ⟩ ∈ 𝑉 ⟂
𝑂  and then |𝑣𝐼

𝑗⟩ such that

𝑈|𝑢𝐼
𝑗⟩ = 𝜆𝑗|𝑢𝑂

𝑗 ⟩ + √1 − 𝜆2
𝑗 |𝑣𝑂

𝑗 ⟩,

𝑈|𝑣𝐼
𝑗⟩ = −√1 − 𝜆2

𝑗 |𝑢𝑂
𝑗 ⟩ + 𝜆𝑗|𝑣𝑂

𝑗 ⟩.
(2)

Inverting this equation yields

𝑈†|𝑢𝑂
𝑗 ⟩ = 𝜆𝑗|𝑢𝐼

𝑗⟩ − √1 − 𝜆2
𝑗 |𝑣𝐼

𝑗⟩,

𝑈†|𝑣𝑂
𝑗 ⟩ = √1 − 𝜆2

𝑗 |𝑢𝐼
𝑗⟩ + 𝜆𝑗|𝑣𝐼

𝑗⟩.
(3)

Let us make some observations: First of all, the set {|𝑣𝑂
𝑗 ⟩ : 𝑗 ≤ 𝑘 ∧ 𝑙, 𝜆𝑗 ≠ 1} is orthonormal. To

see this, take 𝑗, 𝑗′ ≤ 𝑘 ∧ 𝑙 such that 𝜆𝑗, 𝜆𝑗′ ≠ 1 and observe that

𝛿𝑗𝑗′ = ⟨𝑢𝐼
𝑗 |𝑢𝐼

𝑗′⟩ = (𝜆𝑗⟨𝑢𝑂
𝑗 | + √1 − 𝜆2

𝑗⟨𝑣𝑂
𝑗 |)(𝜆𝑗′|𝑢𝑂

𝑗′⟩ + √1 − 𝜆2
𝑗′|𝑣𝑂

𝑗′⟩)

= 𝜆𝑗𝜆𝑗′𝛿𝑗𝑗′ + √1 − 𝜆2
𝑗√1 − 𝜆2

𝑗′⟨𝑣𝑂
𝑗 |𝑣𝑂

𝑗′⟩ and hence ⟨𝑣𝑂
𝑗 |𝑣𝑂

𝑗′⟩ = 𝛿𝑗𝑗′ .

Also we have that |𝑣𝐼
𝑗⟩ ∈ 𝑉 ⟂

𝐼  for all 𝑗 ≤ 𝑘 ∧ 𝑙 with 𝜆𝑗 ≠ 1. To prove, it is enough to show that
⟨𝑣𝐼

𝑗 |𝑢𝐼
𝑗′⟩ for all 𝑗′ ≤ 𝑙. This is direct if 𝑗′ > 𝑘 ∧ 𝑙, so suppose that 𝑗′ ≤ 𝑘 ∧ 𝑙. If 𝜆𝑗′ ≠ 1 we have

⟨𝑣𝐼
𝑗 |𝑢𝐼

𝑗′⟩ = (⟨𝑣𝐼
𝑗 |𝑈†)(𝑈|𝑢𝐼

𝑗′⟩)

= (−√1 − 𝜆2
𝑗⟨𝑢𝑂

𝑗 | + 𝜆𝑗⟨𝑣𝑂
𝑗 |)(𝜆𝑗′|𝑢𝑂

𝑗′⟩ + √1 − 𝜆2
𝑗′|𝑣𝑂

𝑗′⟩)

= −𝜆𝑗′√1 − 𝜆2
𝑗𝛿𝑗𝑗′ + 𝜆𝑗√1 − 𝜆2

𝑗′𝛿𝑗𝑗′ = 0
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and the case 𝜆𝑗′ = 1 is similar but slightly simpler. To summarize, we have |𝑢𝐼
𝑗⟩ ∈ 𝑉𝐼 , |𝑢𝑂

𝑗 ⟩ ∈ 𝑉𝑂
and have shown that |𝑣𝐼

𝑗⟩ ∈ 𝑉 ⟂
𝐼  and |𝑣𝑂

𝑗 ⟩ ∈ 𝑉 ⟂
𝑂  are normalized states and these states satisfy the

equations (2) and (3).

By the definitions we also have (note that the equations involving |𝑣𝐼
𝑗⟩ and |𝑣𝑂

𝑗 ⟩ only make sense in
the case where 𝑗 ≤ 𝑘 ∧ 𝑙 and 𝜆𝑗 ≠ 1 since we only defined the vectors in this case):

𝑒𝑖𝜃(2Π𝐼−𝐼)|𝑢𝐼
𝑗⟩ = 𝑒𝑖𝜃|𝑢𝐼

𝑗⟩ and 𝑒𝑖𝜃(2Π𝐼−𝐼)|𝑣𝐼
𝑗⟩ = 𝑒−𝑖𝜃|𝑣𝐼

𝑗⟩,

𝑒𝑖𝜃(2Π𝑂−𝐼)|𝑢𝑂
𝑗 ⟩ = 𝑒𝑖𝜃|𝑢𝑂

𝑗 ⟩ and 𝑒𝑖𝜃(2Π𝑂−𝐼)|𝑣𝑂
𝑗 ⟩ = 𝑒−𝑖𝜃|𝑣𝑂

𝑗 ⟩.

We see that these expressions together with (2) and (3) show what the operations 𝑈 , 𝑈†, 𝑅𝐼
𝜃 ≔

exp(𝑖𝜃(2Π𝐼 − 𝐼)) and 𝑅𝑂
𝜃 ≔ exp(𝑖𝜃(2Π𝐼 − 𝐼)) do to the various states introduced above.

We can now put everything together: Take 𝜃1, 𝜃′
1, …, 𝜃𝑛+1, 𝜃′

𝑛+1 ∈ ℝ and make the following
definitions

𝑈𝑓 ≔ (𝑅𝑂
𝜃′

𝑛+1
𝑈𝑅𝐼

𝜃𝑛+1
)(𝑈†𝑅𝑂

𝜃′
𝑛
𝑈𝑅𝐼

𝜃𝑛
) ⋯ (𝑈†𝑅𝑂

𝜃′
1
𝑈𝑅𝐼

𝜃1
),

𝐴𝜆 ≔ (𝑁𝜃′
𝑛+1

𝑀𝜆𝑁𝜃𝑛+1
)(𝑀𝑇

𝜆 𝑁𝜃′
𝑛
𝑀𝜆𝑁𝜃𝑛

) ⋯ (𝑀𝑇
𝜆 𝑁𝜃′

1
𝑀𝜆𝑁𝜃1

) where

𝑁𝜃 = (𝑒𝑖𝜃

0
0

𝑒𝑖𝜃
), 𝑀𝜆 = ( 𝜆√

1 − 𝜆2

−
√

1 − 𝜆2

𝜆
).

Then if 𝑗 ≤ 𝑘 ∧ 𝑙 and 𝜆𝑗 ≠ 1 we have 𝑈𝑓 |𝑢𝐼
𝑗⟩, 𝑈𝑓 |𝑣𝐼

𝑗⟩ ∈ ⟨|𝑢𝑂
𝑗 ⟩, |𝑣𝑂

𝑗 ⟩⟩ and

⎝
⎜⎜
⎛⟨𝑢𝑂

𝑗 |𝑈𝑓 |𝑢𝐼
𝑗⟩

⟨𝑣𝑂
𝑗 |𝑈𝑓 |𝑢𝐼

𝑗⟩

⟨𝑢𝑂
𝑗 |𝑈𝑓 |𝑣𝐼

𝑗⟩

⟨𝑣𝑂
𝑗 |𝑈𝑓 |𝑣𝐼

𝑗⟩⎠
⎟⎟
⎞ = 𝐴𝜆𝑗

.

In particular if we let 𝑓(𝜆) = (𝐴𝜆)11 then ⟨𝑢𝑂
𝑗 |𝑈𝑓 |𝑢𝐼

𝑗⟩ = 𝑓(𝜆𝑗). One can check the remaining cases
and verifies that indeed

⟨𝑢𝑂
𝑖 |𝑈𝑓 |𝑢𝐼

𝑗⟩ = 𝑓(𝜆𝑗)𝛿𝑖𝑗.

So we have solved the problem if 𝑓  is of the form 𝑓(𝜆) = (𝐴𝜆)11 for some 𝜃1, 𝜃′
1, …, 𝜃𝑛+1, 𝜃′

𝑛+1. The
work [1] exactly determines which functions have such a representation.

3. Grover’s algorithm example
Let us consider the problem of finding 𝑏0 ∈ {0, 1}𝑛 using black-box access to the function 𝑓 :
{0, 1}𝑛 → {0, 1} defined by 𝑓(𝑏) = 1(𝑏 = 𝑏0). We allow oracle access to 𝑈  defined by 𝑈|𝑏⟩|𝑎⟩ =
|𝑏⟩|𝑎 ⊕ 𝑓(𝑏)⟩ (acting on 𝑛 qubits). Note that here 𝑈† = 𝑈 . We take 𝑙 = 1, 𝑘 = 2𝑛 and

|𝜓𝐼
1⟩ =

1
√

2𝑛
∑

𝑏∈{0,1}𝑛
|𝑏⟩|0⟩, {|𝜓𝑂

1 ⟩, …, |𝜓𝑂
𝑘 ⟩} = {|𝑏⟩|1⟩ : 𝑏 ∈ {0, 1}𝑛}.

Then ⟨𝑏, 1|𝑈|𝜓𝐼
1⟩ = 𝛿𝑏𝑏0

/
√

2𝑛 and hence ⟨𝑏, 1|𝑈𝑓 |𝜓𝐼
1⟩ = 𝛿𝑏𝑏0

𝑓(1/
√

2𝑛).

So if we can find an 𝑓  such that 𝑈𝑓  can be implemented with 𝑂(
√

2𝑛) oracle queries to 𝑈  and such
that |𝑓(1/

√
2𝑛)| = Ω(1) then we can compute 𝑈𝑓 |𝜓𝐼

1⟩, measure in the computational basis and with
probability Ω(1) the ancilla qubit will be 1 and the remaining bits give us 𝑏0. Repeating this allows us
to push the probability of never seeing the ancilla in the |1⟩ state exponentially quickly (in the number
of runs of the circuit) to zero, so this gives the Grover speedup as required.
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Recall the definition of the Chebyshev polynomials 𝑇𝑚 : [−1, 1] → [−1, 1] which can be implicitly
be defined by

𝑇𝑚(cos 𝜃) = cos(𝑚𝜃) and hence 𝑇2𝑚+1(sin 𝜃) = (−1)𝑚 sin((2𝑚 + 1)𝜃).

In a moment, we will construct 𝑈𝑇2𝑚+1
 using 2𝑚 + 1 oracle queries to 𝑈 . But beforehand, let us

explain how this yields the claim: Let 𝑚 be the smallest odd integer ≥
√

2𝑛 then by the second formula
|𝑇𝑚(1/

√
2𝑛)| = Ω(1) and 𝑚 = 𝑂(

√
2𝑛) which completes the construction.

The fact that 𝑈𝑇2𝑚+1
 can be constructed using 2𝑚 + 1 oracle queries to 𝑈  follows from the discussion

in the previous section and the matrix identity (noting that the top left entry on the left there is
𝑇2𝑚+1(cos 𝜃) as required in the setup of the previous section)

(
cos((2𝑚 + 1)𝜃)
sin((2𝑚 + 1)𝜃)

− sin((2𝑚 + 1)𝜃)
cos((2𝑚 + 1)𝜃)

)

= (cos 𝜃
sin 𝜃

− sin 𝜃
cos 𝜃

)((−𝑖
0

0
𝑖)(

cos(−𝜃)
sin(−𝜃)

− sin(−𝜃)
cos(−𝜃)

)(𝑖
0

0
−𝑖)(cos 𝜃

sin 𝜃
− sin 𝜃
cos 𝜃

))
𝑚

.

This is easy to see, either by a straightforward induction or by simply observing that the product of the
first three matrices in the bracket on the right implements a rotation by 𝜃 (since it is a composition of a
reflection, a rotation by −𝜃 and the inverse of the reflection) and so we are applying 2𝑚 + 1 rotations
by 𝜃 in total, i.e. a (2𝑚 + 1)𝜃 rotation.
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