
A very compressed primer on compressed sensing

Matthis Lehmkuehler

21/02/2024

1. Introduction
Compressed sensing is about selecting a solution 𝑥 ∈ ℝ𝑛 to 𝑦 = 𝐴𝑥 where 𝑦 ∈ ℝ𝑚 and 𝐴 a 𝑚 × 𝑛
matrix where 𝑛 ≫ 𝑚 (i.e. the problem is very is generically going to have a large solution space). For
𝑝 ∈ [0, ∞] we define the problem (𝑃𝑝) by

(𝑃𝑝) {
minimize ‖𝑥‖𝑝 subject to
𝐴𝑥 = 𝑦

where ‖𝑥‖𝑝 = (|𝑥1|𝑝 + ⋯ + |𝑥𝑛|𝑝)1/𝑝 for 𝑝 ∈ (0, ∞), ‖𝑥‖∞ = max{|𝑥1|, …, |𝑥𝑛|} and where ‖𝑥‖0 =
#{1 ≤ 𝑖 ≤ 𝑛 : 𝑥𝑖 ≠ 0}. If 𝑝 ≥ 1 (in particular 𝑝 = 1), this is a convex problem and can be solved
using convex optimization techniques, while the cases 𝑝 ∈ [0, 1) (in particular 𝑝 = 0) do not enjoy this
property. Compressed sensing is a theory on giving conditions under which the solutions to (𝑃0) and
(𝑃1) agree, thus making the (𝑃0) problem amenable to convex optimization techniques as well.

Let us introduce some notation: We call 𝑥 ∈ ℝ𝑛 𝑠-sparse if ‖𝑥‖0 ≤ 𝑠. Moreover, we let [𝑛] =
{1, …, 𝑛} and if 𝐼 = {𝑖1 < … < 𝑖𝑎} ⊆ [𝑛] we define 𝑥𝐼 = (𝑥𝑖1(𝑖 ∈ 𝐼))𝑖 (i.e. we set all entries with
index not in 𝐼  to 0) and 𝐴𝐼 = (𝐴𝑗𝑖𝑎′)𝑗𝑎′

 (i.e. we only keep the columns with index in 𝐼).

The proof in this short note follows the one in [1] fairly closely. For more in depth information, see
any good textbook on the topic, like [2].

2. Recovery of a sparse solution
Suppose that 𝑥0 is 𝑠-sparse, say supported on 𝐼  with #𝐼 = 𝑠, and satisfies 𝐴𝑥0 = 𝑦. We can ask, under
which condition do we have ‖𝑥‖1 > ‖𝑥0‖1 for all 𝑥 ≠ 𝑥0 satisfying 𝐴𝑥 = 𝑦. If this holds, then clearly
(𝑃1) with 𝑦 = 𝐴𝑥0 has a unique solution given by 𝑥0.

Let 𝑧 = 𝑥 − 𝑥0 which then satisfies 𝐴𝑧 = 0. If 𝑥0 is supported on 𝐼 ⊆ [𝑛] with #𝐼 = 𝑠 then using
that (𝑥0)𝐼 = 𝑥0 and using the triangle inequality, we get

‖𝑥‖1 − ‖𝑥0‖1 = ‖𝑥0 + 𝑧‖1 − ‖𝑥0‖1

= ‖𝑥0 + 𝑧𝐼‖1 + ‖𝑧𝐼𝑐‖1 − ‖𝑥0‖1

≥ ‖𝑧𝐼𝑐‖1 − ‖𝑧𝐼‖1 .

So if the right hand side is either positive or 𝑧 = 0, then the solutions to (𝑃0) and (𝑃1) agree. We will
say that 𝐴 has the null-space property on 𝐼 , or 𝐴 ∈ NSP(𝑚, 𝑛, 𝐼), if each 𝑧 ∈ ker(𝐴) \ {0} satisfies
‖𝑧𝐼‖1 < ‖𝑧𝐼𝑐‖1.

Lemma 2.1. Suppose that 𝑥0 is supported on 𝐼  with #𝐼 = 𝑠 and 𝐴 ∈ NSP(𝑚, 𝑛, 𝐼), then 𝑥0 is
the unique solution to (𝑃1) with 𝑦 = 𝐴𝑥0. Moreover, if 𝐴 ∈ NSP(𝑚, 𝑛, 𝐼′) for all 𝐼′ with #𝐼′ =
𝑠 then 𝑥0 is the unique solution to (𝑃0) with 𝑦 = 𝐴𝑥0.
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Proof. The first part is clear from the discussion above. The second part follows since if 𝑥′
0 is supported

on 𝐼′ with #𝐼′ = 𝑠 and 𝐴𝑥′
0 = 𝑦 then by the same argument, 𝑥′

0 is the unique solution to (𝑃1) with
𝑦 = 𝐴𝑥0 = 𝐴𝑥′

0 and the uniqueness implies 𝑥0 = 𝑥′
0. □

The question is now only, how do we check the condition in the lemma. For this, people have introduced
the restricted isometry property. We write 𝐴 ∈ RIP(𝑚, 𝑛, 𝑠′, 𝛿) for 𝛿 ∈ (0, 1) if

√
1 − 𝛿 ‖𝑥‖2 ≤ ‖𝐴𝑥‖2 ≤

√
1 + 𝛿 ‖𝑥‖2

for all 𝑥 ∈ ℝ𝑛 with ‖𝑥‖0 ≤ 𝑠′. The following proposition shows how the restricted isometry property
implies the null-space property introduced above and that we can hence relate (𝑃0) and (𝑃1) via
Lemma 2.1.

Proposition 2.2. If 𝐴 ∈ RIP(𝑚, 𝑛, 𝑠 + 𝑠′, 𝛿) for 𝑠/𝑠′ < (1 − 𝛿)/(1 + 𝛿) and 𝑠, 𝑠′ ≥ 1, then 𝐴 ∈
NSP(𝑚, 𝑛, 𝐼) for all 𝐼  with #𝐼 = 𝑠.

Proof. Fix 𝐼  with #𝐼 = 𝑠 and 𝑧 ∈ ker(𝐴) \ {0}. Take an enumeration 𝐼𝑐 ∪ (ℕ \ [𝑛]) = {𝑖𝑗 : 𝑗 ≥ 1}
such that the sequence (|𝑧𝑖𝑗

|)
𝑗
 is non-increasing where we make the convention 𝑧𝑖 = 0 if 𝑖 > 𝑛. Let

𝐼𝑘 = {𝑖𝑠′(𝑘−1)+1, …, 𝑖𝑠′𝑘} for 𝑘 ≥ 1.

Then since 0 = 𝐴𝑧 = 𝐴𝑧𝐼∪𝐼1
+ ∑𝑘≥1 𝐴𝑧𝐼𝑘+1

 and using the RIP property, we get

‖𝑧𝐼‖1 ≤
√

𝑠 ‖𝑧𝐼‖2 ≤
√

𝑠 ‖𝑧𝐼∪𝐼1
‖2

≤
√

𝑠
√

1 − 𝛿
‖𝐴𝑧𝐼∪𝐼1

‖2

≤
√

𝑠
√

1 − 𝛿
∑
𝑘≥1

‖𝐴𝑧𝐼𝑘+1
‖2

≤
√

𝑠
√

1 + 𝛿
√

1 − 𝛿
∑
𝑘≥1

‖𝑧𝐼𝑘+1
‖2 .

Clearly ‖𝑧𝐼𝑘+1
‖2 ≤

√
𝑠′ ‖𝑧𝐼𝑘+1

‖∞ and by the definition of the (𝐼𝑘), we have 𝑠′‖𝑧𝐼𝑘+1
‖∞ ≤ ‖𝑧𝐼𝑘

‖1.
Putting this together yields

‖𝑧𝐼‖1 ≤
√𝑠/𝑠′

√
1 + 𝛿

√
1 − 𝛿

∑
𝑘≥1

‖𝑧𝐼𝑘
‖1 =

√𝑠/𝑠′
√

1 + 𝛿
√

1 − 𝛿
‖𝑧𝐼𝑐‖1 .

The assumption 𝑠/𝑠′ < (1 − 𝛿)/(1 + 𝛿) implies ‖𝑧𝐼‖1 < ‖𝑧𝐼𝑐‖1 since 𝑧 ≠ 0. □

3. Random Gaussian matrices allow compressed sensing
In this section, we will see how to apply this framework in the case when the matrix 𝐴 is given by
i.i.d. Gaussian entries.

The key here will be to use a tailbound on ℙ(‖𝑀‖op > 𝛿) for a random 𝑠 × 𝑠 symmetric matrix 𝑀 ,
so let us recall how to do this using the idea of 𝜀-nets. Fix 𝜀 ∈ (0, 1/2) and let 𝑁𝜀 be a maximal subset
of points in {𝑥 ∈ ℝ𝑠 : ‖𝑥‖2 = 1} which are all distance > 𝜀 away from each other. Then by a crude
volume bound, we have that

#𝑁𝜀 ≤ (1 + 𝜀/2)𝑠(𝜀/2)−𝑠 ≤ (3/𝜀)𝑠.
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Since 𝑀  is symmetric (by considering its eigendecomposition),

‖𝑀‖op = max
𝑥∈ℝ𝑠: ‖𝑥‖2=1

|(𝑥, 𝑀𝑥)| .

The point is that by maximality, whenever 𝑥 ∈ ℝ𝑠 satisfies ‖𝑥‖2 = 1, there exists 𝑥′ ∈ 𝑁𝜀 such that
‖𝑥 − 𝑥′‖ ≤ 𝜀 and hence

|(𝑥, 𝑀𝑥)| ≤ |(𝑥′, 𝑀𝑥′)| + |(𝑥 − 𝑥′, 𝑀𝑥)| + |(𝑥′, 𝑀(𝑥 − 𝑥′))| ≤ |(𝑥′, 𝑀𝑥′)| + 2𝜀‖𝑀‖op .

By taking the maximum over all 𝑥 ∈ ℝ𝑠 with ‖𝑥‖2 = 1 and upper bounding the first term on the right
side by the maximum over all 𝑥′ ∈ 𝑁𝜀, we get

‖𝑀‖op ≤ (1 − 2𝜀)−1 max
𝑥′∈𝑁𝜀

|(𝑥′, 𝑀𝑥′)|

which readily implies that for 𝛿 > 0,

ℙ(‖𝑀‖op > 𝛿) ≤ ℙ( max
𝑥′∈𝑁𝜀

|(𝑥′, 𝑀𝑥′)| > (1 − 2𝜀)𝛿) ≤ ∑
𝑥′∈𝑁𝜀

ℙ(|(𝑥′, 𝑀𝑥′)| > (1 − 2𝜀)𝛿)

≤ (
3
𝜀
)

𝑠

max
𝑥′∈ℝ𝑠: ‖𝑥′‖2 =1

ℙ(|(𝑥′, 𝑀𝑥′)| > (1 − 2𝜀)𝛿).
(1)

The point is that we can essentially interchange the maximum defining the operator norm with the
probability expression and only incur an exponential error term which we will be able to suppress.

The following lemma shows that a matrix 𝐴 with i.i.d. Gaussian entries satisfies the RIP property.
Here and below, 𝜎1(𝑀), …, 𝜎𝑠(𝑀) denote the singular values of a 𝑚 × 𝑠 matrix (in increasing order)
and 𝜆1(𝑀), …, 𝜆𝑠(𝑀) denote the eigenvalues of a 𝑠 × 𝑠 matrix (also in increasing order).

Lemma 3.1. There exists 𝑐, 𝐶 > 0 such that the following is true: Let 𝐴 be a 𝑚 × 𝑛 matrix with
i.i.d. 𝑁(0, 1/𝑚) entries where 𝑠 ≤ 𝑚 ≤ 𝑛 with 𝑛 > 1, and 𝛿 ∈ (0, 1). Then 𝐴 ∈ RIP(𝑚, 𝑛, 𝑠, 𝛿)
with probability ≥ 1 − exp(𝐶𝑠 log(𝑛) − 𝑐𝑚𝛿2).

Proof. Note that

{𝐴 ∈ RIP(𝑚, 𝑛, 𝑠, 𝛿)} = {∀𝐼 ⊆ [𝑛] with #𝐼 = 𝑠 : 𝜎𝑖(𝐴𝐼) ∈ [
√

1 − 𝛿,
√

1 + 𝛿 ] ∀𝑖 ≤ 𝑠}.

Then by a union bound we get

ℙ(𝐴 ∉ RIP(𝑚, 𝑛, 𝑠, 𝛿)) ≤ (
𝑛
𝑠
) max

𝐼⊆[𝑛]:#𝐼=𝑠
ℙ({𝜎𝑖(𝐴𝐼) ∈ [

√
1 − 𝛿,

√
1 + 𝛿 ] ∀𝑖 ≤ 𝑠}

𝑐
)

= (
𝑛
𝑠
) max

𝐼⊆[𝑛]:#𝐼=𝑠
ℙ({𝜆𝑖(𝐴𝑇

𝐼 𝐴𝐼) ∈ [1 − 𝛿, 1 + 𝛿] ∀𝑖 ≤ 𝑠}𝑐)

= (
𝑛
𝑠
) max

𝐼⊆[𝑛]:#𝐼=𝑠
ℙ(‖𝐴𝑇

𝐼 𝐴𝐼 − 𝐼𝑠‖op > 𝛿)

= (
𝑛
𝑠
)ℙ(‖𝐴𝑇

[𝑠]𝐴[𝑠] − 𝐼𝑠‖op > 𝛿).

The last equality followed since all expressions in the maximum are the same by the i.i.d. property. Let
𝐵 = 𝐴[𝑠] which is a 𝑚 × 𝑠 matrix with i.i.d. 𝑁(0, 1/𝑚) entries. Then by (1) we get for 𝜀 ∈ (0, 1/2),
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ℙ(‖𝐵𝑇 𝐵 − 𝐼𝑠‖op > 𝛿) ≤ (
3
𝜀
)

𝑠

max
𝑥∈ℝ𝑠: ‖𝑥‖2=1

ℙ(|(𝑥, (𝐵𝑇 𝐵 − 𝐼)𝑥)| > (1 − 2𝜀)𝛿)

≤ (
3
𝜀
)

𝑠

max
𝑥∈ℝ𝑠: ‖𝑥‖2=1

ℙ(| ‖𝐵𝑥‖2
2 − 1| > (1 − 2𝜀)𝛿)

= (
3
𝜀
)

𝑠

ℙ(|
𝑁2

1 + ⋯ + 𝑁2
𝑚

𝑚
− 1| > (1 − 2𝜀)𝛿)

where 𝑁1, …, 𝑁𝑚 ∼ 𝑁(0, 1) are i.i.d.; this follows since for any 𝑥 ∈ ℝ𝑠 with ‖𝑥‖2 = 1, the vector 𝐵𝑥
has i.i.d. 𝑁(0, 1/𝑚) entries. For the last term, we can use a standard exponential tail bound. Thus
putting everything together, we see that there exist universal 𝑐, 𝐶 > 0 such that

ℙ(𝐴 ∉ RIP(𝑚, 𝑛, 𝑠, 𝛿)) ≤ (
𝑛
𝑠
)(

3
𝜀
)

𝑠

𝐶𝑒−𝑐𝑚(1−2𝜀)2𝛿2

≤ 𝐶 ⋅ exp(𝑠 log(3𝑛/𝜀) − 𝑐𝑚(1 − 2𝜀)2𝛿2).

By taking 𝜀 = 1/3, we see that after redefining the constants 𝑐, 𝐶 > 0, we have that ℙ(𝐴 ∉
RIP(𝑚, 𝑛, 𝑠, 𝛿)) ≤ exp(𝐶𝑠 log(𝑛) − 𝑐𝑚𝛿2) as required. □
In practice, one can simply apply this result with 𝛿 = 1/4 to get a control on the probability of the
event 𝐴 ∈ RIP(𝑚, 𝑛, 𝑠 + 𝑠′, 𝛿) holding where we consider 𝑠′ = 2𝑠, and we are in a setting where we
can apply Proposition 2.2.

Remark 3.2. What’s remarkable (no pun intended) about this result is that it suffices to take
𝑚 = Ω(𝑠 log(𝑛)) to get the RIP property and hence the sparse recovery result. The 𝑠 prefactor is
not surprising since in order to recover a vector with 𝑠 entries, we certainly need at least data of
dimension 𝑠 but it is incredibly useful that we can take 𝑛 (the dimension out of which we need to
select the 𝑠 sparse entries) exponential in 𝑚.
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